\(\int \frac {\sin (c+d x)}{x (a+b x^2)} \, dx\) [62]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 19, antiderivative size = 197 \[ \int \frac {\sin (c+d x)}{x \left (a+b x^2\right )} \, dx=\frac {\operatorname {CosIntegral}(d x) \sin (c)}{a}-\frac {\operatorname {CosIntegral}\left (\frac {\sqrt {-a} d}{\sqrt {b}}+d x\right ) \sin \left (c-\frac {\sqrt {-a} d}{\sqrt {b}}\right )}{2 a}-\frac {\operatorname {CosIntegral}\left (\frac {\sqrt {-a} d}{\sqrt {b}}-d x\right ) \sin \left (c+\frac {\sqrt {-a} d}{\sqrt {b}}\right )}{2 a}+\frac {\cos (c) \text {Si}(d x)}{a}+\frac {\cos \left (c+\frac {\sqrt {-a} d}{\sqrt {b}}\right ) \text {Si}\left (\frac {\sqrt {-a} d}{\sqrt {b}}-d x\right )}{2 a}-\frac {\cos \left (c-\frac {\sqrt {-a} d}{\sqrt {b}}\right ) \text {Si}\left (\frac {\sqrt {-a} d}{\sqrt {b}}+d x\right )}{2 a} \]

[Out]

cos(c)*Si(d*x)/a-1/2*cos(c+d*(-a)^(1/2)/b^(1/2))*Si(d*x-d*(-a)^(1/2)/b^(1/2))/a-1/2*cos(c-d*(-a)^(1/2)/b^(1/2)
)*Si(d*x+d*(-a)^(1/2)/b^(1/2))/a+Ci(d*x)*sin(c)/a-1/2*Ci(d*x+d*(-a)^(1/2)/b^(1/2))*sin(c-d*(-a)^(1/2)/b^(1/2))
/a-1/2*Ci(-d*x+d*(-a)^(1/2)/b^(1/2))*sin(c+d*(-a)^(1/2)/b^(1/2))/a

Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 197, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.211, Rules used = {3426, 3384, 3380, 3383} \[ \int \frac {\sin (c+d x)}{x \left (a+b x^2\right )} \, dx=-\frac {\sin \left (c-\frac {\sqrt {-a} d}{\sqrt {b}}\right ) \operatorname {CosIntegral}\left (x d+\frac {\sqrt {-a} d}{\sqrt {b}}\right )}{2 a}-\frac {\sin \left (\frac {\sqrt {-a} d}{\sqrt {b}}+c\right ) \operatorname {CosIntegral}\left (\frac {\sqrt {-a} d}{\sqrt {b}}-d x\right )}{2 a}+\frac {\cos \left (\frac {\sqrt {-a} d}{\sqrt {b}}+c\right ) \text {Si}\left (\frac {\sqrt {-a} d}{\sqrt {b}}-d x\right )}{2 a}-\frac {\cos \left (c-\frac {\sqrt {-a} d}{\sqrt {b}}\right ) \text {Si}\left (x d+\frac {\sqrt {-a} d}{\sqrt {b}}\right )}{2 a}+\frac {\sin (c) \operatorname {CosIntegral}(d x)}{a}+\frac {\cos (c) \text {Si}(d x)}{a} \]

[In]

Int[Sin[c + d*x]/(x*(a + b*x^2)),x]

[Out]

(CosIntegral[d*x]*Sin[c])/a - (CosIntegral[(Sqrt[-a]*d)/Sqrt[b] + d*x]*Sin[c - (Sqrt[-a]*d)/Sqrt[b]])/(2*a) -
(CosIntegral[(Sqrt[-a]*d)/Sqrt[b] - d*x]*Sin[c + (Sqrt[-a]*d)/Sqrt[b]])/(2*a) + (Cos[c]*SinIntegral[d*x])/a +
(Cos[c + (Sqrt[-a]*d)/Sqrt[b]]*SinIntegral[(Sqrt[-a]*d)/Sqrt[b] - d*x])/(2*a) - (Cos[c - (Sqrt[-a]*d)/Sqrt[b]]
*SinIntegral[(Sqrt[-a]*d)/Sqrt[b] + d*x])/(2*a)

Rule 3380

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinIntegral[e + f*x]/d, x] /; FreeQ[{c, d,
 e, f}, x] && EqQ[d*e - c*f, 0]

Rule 3383

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CosIntegral[e - Pi/2 + f*x]/d, x] /; FreeQ
[{c, d, e, f}, x] && EqQ[d*(e - Pi/2) - c*f, 0]

Rule 3384

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 3426

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*Sin[(c_.) + (d_.)*(x_)], x_Symbol] :> Int[ExpandIntegrand[Sin[c +
 d*x], x^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && ILtQ[p, 0] && IGtQ[n, 0] && (EqQ[n, 2] || EqQ
[p, -1]) && IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = \int \left (\frac {\sin (c+d x)}{a x}-\frac {b x \sin (c+d x)}{a \left (a+b x^2\right )}\right ) \, dx \\ & = \frac {\int \frac {\sin (c+d x)}{x} \, dx}{a}-\frac {b \int \frac {x \sin (c+d x)}{a+b x^2} \, dx}{a} \\ & = -\frac {b \int \left (-\frac {\sin (c+d x)}{2 \sqrt {b} \left (\sqrt {-a}-\sqrt {b} x\right )}+\frac {\sin (c+d x)}{2 \sqrt {b} \left (\sqrt {-a}+\sqrt {b} x\right )}\right ) \, dx}{a}+\frac {\cos (c) \int \frac {\sin (d x)}{x} \, dx}{a}+\frac {\sin (c) \int \frac {\cos (d x)}{x} \, dx}{a} \\ & = \frac {\operatorname {CosIntegral}(d x) \sin (c)}{a}+\frac {\cos (c) \text {Si}(d x)}{a}+\frac {\sqrt {b} \int \frac {\sin (c+d x)}{\sqrt {-a}-\sqrt {b} x} \, dx}{2 a}-\frac {\sqrt {b} \int \frac {\sin (c+d x)}{\sqrt {-a}+\sqrt {b} x} \, dx}{2 a} \\ & = \frac {\operatorname {CosIntegral}(d x) \sin (c)}{a}+\frac {\cos (c) \text {Si}(d x)}{a}-\frac {\left (\sqrt {b} \cos \left (c-\frac {\sqrt {-a} d}{\sqrt {b}}\right )\right ) \int \frac {\sin \left (\frac {\sqrt {-a} d}{\sqrt {b}}+d x\right )}{\sqrt {-a}+\sqrt {b} x} \, dx}{2 a}-\frac {\left (\sqrt {b} \cos \left (c+\frac {\sqrt {-a} d}{\sqrt {b}}\right )\right ) \int \frac {\sin \left (\frac {\sqrt {-a} d}{\sqrt {b}}-d x\right )}{\sqrt {-a}-\sqrt {b} x} \, dx}{2 a}-\frac {\left (\sqrt {b} \sin \left (c-\frac {\sqrt {-a} d}{\sqrt {b}}\right )\right ) \int \frac {\cos \left (\frac {\sqrt {-a} d}{\sqrt {b}}+d x\right )}{\sqrt {-a}+\sqrt {b} x} \, dx}{2 a}+\frac {\left (\sqrt {b} \sin \left (c+\frac {\sqrt {-a} d}{\sqrt {b}}\right )\right ) \int \frac {\cos \left (\frac {\sqrt {-a} d}{\sqrt {b}}-d x\right )}{\sqrt {-a}-\sqrt {b} x} \, dx}{2 a} \\ & = \frac {\operatorname {CosIntegral}(d x) \sin (c)}{a}-\frac {\operatorname {CosIntegral}\left (\frac {\sqrt {-a} d}{\sqrt {b}}+d x\right ) \sin \left (c-\frac {\sqrt {-a} d}{\sqrt {b}}\right )}{2 a}-\frac {\operatorname {CosIntegral}\left (\frac {\sqrt {-a} d}{\sqrt {b}}-d x\right ) \sin \left (c+\frac {\sqrt {-a} d}{\sqrt {b}}\right )}{2 a}+\frac {\cos (c) \text {Si}(d x)}{a}+\frac {\cos \left (c+\frac {\sqrt {-a} d}{\sqrt {b}}\right ) \text {Si}\left (\frac {\sqrt {-a} d}{\sqrt {b}}-d x\right )}{2 a}-\frac {\cos \left (c-\frac {\sqrt {-a} d}{\sqrt {b}}\right ) \text {Si}\left (\frac {\sqrt {-a} d}{\sqrt {b}}+d x\right )}{2 a} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.36 (sec) , antiderivative size = 174, normalized size of antiderivative = 0.88 \[ \int \frac {\sin (c+d x)}{x \left (a+b x^2\right )} \, dx=\frac {-i e^{-i c-\frac {\sqrt {a} d}{\sqrt {b}}} \left (e^{\frac {2 \sqrt {a} d}{\sqrt {b}}} \operatorname {ExpIntegralEi}\left (-\frac {\sqrt {a} d}{\sqrt {b}}-i d x\right )+\operatorname {ExpIntegralEi}\left (\frac {\sqrt {a} d}{\sqrt {b}}-i d x\right )-e^{2 i c} \left (e^{\frac {2 \sqrt {a} d}{\sqrt {b}}} \operatorname {ExpIntegralEi}\left (-\frac {\sqrt {a} d}{\sqrt {b}}+i d x\right )+\operatorname {ExpIntegralEi}\left (\frac {\sqrt {a} d}{\sqrt {b}}+i d x\right )\right )\right )+4 \operatorname {CosIntegral}(d x) \sin (c)+4 \cos (c) \text {Si}(d x)}{4 a} \]

[In]

Integrate[Sin[c + d*x]/(x*(a + b*x^2)),x]

[Out]

((-I)*E^((-I)*c - (Sqrt[a]*d)/Sqrt[b])*(E^((2*Sqrt[a]*d)/Sqrt[b])*ExpIntegralEi[-((Sqrt[a]*d)/Sqrt[b]) - I*d*x
] + ExpIntegralEi[(Sqrt[a]*d)/Sqrt[b] - I*d*x] - E^((2*I)*c)*(E^((2*Sqrt[a]*d)/Sqrt[b])*ExpIntegralEi[-((Sqrt[
a]*d)/Sqrt[b]) + I*d*x] + ExpIntegralEi[(Sqrt[a]*d)/Sqrt[b] + I*d*x])) + 4*CosIntegral[d*x]*Sin[c] + 4*Cos[c]*
SinIntegral[d*x])/(4*a)

Maple [A] (verified)

Time = 0.27 (sec) , antiderivative size = 200, normalized size of antiderivative = 1.02

method result size
derivativedivides \(-\frac {\operatorname {Si}\left (d x +c -\frac {d \sqrt {-a b}+c b}{b}\right ) \cos \left (\frac {d \sqrt {-a b}+c b}{b}\right )+\operatorname {Ci}\left (d x +c -\frac {d \sqrt {-a b}+c b}{b}\right ) \sin \left (\frac {d \sqrt {-a b}+c b}{b}\right )}{2 a}-\frac {\operatorname {Si}\left (d x +c +\frac {d \sqrt {-a b}-c b}{b}\right ) \cos \left (\frac {d \sqrt {-a b}-c b}{b}\right )-\operatorname {Ci}\left (d x +c +\frac {d \sqrt {-a b}-c b}{b}\right ) \sin \left (\frac {d \sqrt {-a b}-c b}{b}\right )}{2 a}+\frac {\operatorname {Si}\left (d x \right ) \cos \left (c \right )+\operatorname {Ci}\left (d x \right ) \sin \left (c \right )}{a}\) \(200\)
default \(-\frac {\operatorname {Si}\left (d x +c -\frac {d \sqrt {-a b}+c b}{b}\right ) \cos \left (\frac {d \sqrt {-a b}+c b}{b}\right )+\operatorname {Ci}\left (d x +c -\frac {d \sqrt {-a b}+c b}{b}\right ) \sin \left (\frac {d \sqrt {-a b}+c b}{b}\right )}{2 a}-\frac {\operatorname {Si}\left (d x +c +\frac {d \sqrt {-a b}-c b}{b}\right ) \cos \left (\frac {d \sqrt {-a b}-c b}{b}\right )-\operatorname {Ci}\left (d x +c +\frac {d \sqrt {-a b}-c b}{b}\right ) \sin \left (\frac {d \sqrt {-a b}-c b}{b}\right )}{2 a}+\frac {\operatorname {Si}\left (d x \right ) \cos \left (c \right )+\operatorname {Ci}\left (d x \right ) \sin \left (c \right )}{a}\) \(200\)
risch \(-\frac {i {\mathrm e}^{\frac {i c b +d \sqrt {a b}}{b}} \operatorname {Ei}_{1}\left (\frac {i c b +d \sqrt {a b}-b \left (i d x +i c \right )}{b}\right )}{4 a}-\frac {i {\mathrm e}^{\frac {i c b -d \sqrt {a b}}{b}} \operatorname {Ei}_{1}\left (\frac {i c b -d \sqrt {a b}-b \left (i d x +i c \right )}{b}\right )}{4 a}+\frac {i {\mathrm e}^{i c} \operatorname {Ei}_{1}\left (-i d x \right )}{2 a}+\frac {i {\mathrm e}^{-\frac {i c b +d \sqrt {a b}}{b}} \operatorname {Ei}_{1}\left (-\frac {i c b +d \sqrt {a b}-b \left (i d x +i c \right )}{b}\right )}{4 a}+\frac {i {\mathrm e}^{-\frac {i c b -d \sqrt {a b}}{b}} \operatorname {Ei}_{1}\left (-\frac {i c b -d \sqrt {a b}-b \left (i d x +i c \right )}{b}\right )}{4 a}-\frac {{\mathrm e}^{-i c} \pi \,\operatorname {csgn}\left (d x \right )}{2 a}+\frac {{\mathrm e}^{-i c} \operatorname {Si}\left (d x \right )}{a}-\frac {i {\mathrm e}^{-i c} \operatorname {Ei}_{1}\left (-i d x \right )}{2 a}\) \(298\)

[In]

int(sin(d*x+c)/x/(b*x^2+a),x,method=_RETURNVERBOSE)

[Out]

-1/2/a*(Si(d*x+c-(d*(-a*b)^(1/2)+c*b)/b)*cos((d*(-a*b)^(1/2)+c*b)/b)+Ci(d*x+c-(d*(-a*b)^(1/2)+c*b)/b)*sin((d*(
-a*b)^(1/2)+c*b)/b))-1/2/a*(Si(d*x+c+(d*(-a*b)^(1/2)-c*b)/b)*cos((d*(-a*b)^(1/2)-c*b)/b)-Ci(d*x+c+(d*(-a*b)^(1
/2)-c*b)/b)*sin((d*(-a*b)^(1/2)-c*b)/b))+1/a*(Si(d*x)*cos(c)+Ci(d*x)*sin(c))

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.30 (sec) , antiderivative size = 162, normalized size of antiderivative = 0.82 \[ \int \frac {\sin (c+d x)}{x \left (a+b x^2\right )} \, dx=\frac {i \, {\rm Ei}\left (i \, d x - \sqrt {\frac {a d^{2}}{b}}\right ) e^{\left (i \, c + \sqrt {\frac {a d^{2}}{b}}\right )} + i \, {\rm Ei}\left (i \, d x + \sqrt {\frac {a d^{2}}{b}}\right ) e^{\left (i \, c - \sqrt {\frac {a d^{2}}{b}}\right )} - i \, {\rm Ei}\left (-i \, d x - \sqrt {\frac {a d^{2}}{b}}\right ) e^{\left (-i \, c + \sqrt {\frac {a d^{2}}{b}}\right )} - i \, {\rm Ei}\left (-i \, d x + \sqrt {\frac {a d^{2}}{b}}\right ) e^{\left (-i \, c - \sqrt {\frac {a d^{2}}{b}}\right )} + 4 \, \operatorname {Ci}\left (d x\right ) \sin \left (c\right ) + 4 \, \cos \left (c\right ) \operatorname {Si}\left (d x\right )}{4 \, a} \]

[In]

integrate(sin(d*x+c)/x/(b*x^2+a),x, algorithm="fricas")

[Out]

1/4*(I*Ei(I*d*x - sqrt(a*d^2/b))*e^(I*c + sqrt(a*d^2/b)) + I*Ei(I*d*x + sqrt(a*d^2/b))*e^(I*c - sqrt(a*d^2/b))
 - I*Ei(-I*d*x - sqrt(a*d^2/b))*e^(-I*c + sqrt(a*d^2/b)) - I*Ei(-I*d*x + sqrt(a*d^2/b))*e^(-I*c - sqrt(a*d^2/b
)) + 4*cos_integral(d*x)*sin(c) + 4*cos(c)*sin_integral(d*x))/a

Sympy [F]

\[ \int \frac {\sin (c+d x)}{x \left (a+b x^2\right )} \, dx=\int \frac {\sin {\left (c + d x \right )}}{x \left (a + b x^{2}\right )}\, dx \]

[In]

integrate(sin(d*x+c)/x/(b*x**2+a),x)

[Out]

Integral(sin(c + d*x)/(x*(a + b*x**2)), x)

Maxima [F]

\[ \int \frac {\sin (c+d x)}{x \left (a+b x^2\right )} \, dx=\int { \frac {\sin \left (d x + c\right )}{{\left (b x^{2} + a\right )} x} \,d x } \]

[In]

integrate(sin(d*x+c)/x/(b*x^2+a),x, algorithm="maxima")

[Out]

integrate(sin(d*x + c)/((b*x^2 + a)*x), x)

Giac [F]

\[ \int \frac {\sin (c+d x)}{x \left (a+b x^2\right )} \, dx=\int { \frac {\sin \left (d x + c\right )}{{\left (b x^{2} + a\right )} x} \,d x } \]

[In]

integrate(sin(d*x+c)/x/(b*x^2+a),x, algorithm="giac")

[Out]

integrate(sin(d*x + c)/((b*x^2 + a)*x), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sin (c+d x)}{x \left (a+b x^2\right )} \, dx=\int \frac {\sin \left (c+d\,x\right )}{x\,\left (b\,x^2+a\right )} \,d x \]

[In]

int(sin(c + d*x)/(x*(a + b*x^2)),x)

[Out]

int(sin(c + d*x)/(x*(a + b*x^2)), x)